| 成果基本信息 | ||||||
| 关键词: | 老化预测 | |||||
| 成果类别: | 应用技术 | 技术成熟度: | 初期阶段 | |||
| 体现形式(基础理论类): | 其他 | 体现形式(应用技术类): | 新技术 | |||
| 成果登记号: | 资源采集日期: | |||||
| 研究情况 | |||||
| 单位名称: | 武汉理工大学 | 技术水平: | 未评价 | ||
| 评价证书号: | 评价单位: | ||||
| 评价日期: | 评价证书号: | ||||
| 转化情况 | |||||
| 转让范围: | 合作开发 | 推广形式: | 合作开发 | ||
| 已转让企业数(个): | |||||
| 联系方式 | |||||
| 联系人(平台): | 孵化基地 | 联系人(平台)电话: | 0771-3394012 | ||
| *成果单位详细联系方式请登录会员;还不是会员,马上注册! | |||||
| 成果简介 | |||||
本发明公开了一种基于多模型对比的软件老化预测方法及装置,属于软件老化领域,从目标软件系统收集老化指标,将其处理成时间序列数据作为模型的预输入;针对老化数据规模,设计包括机器学习和神经网络的老化预测模型,计算各模型的预测误差,选定误差最小的模型作为候选模型;计算该模型与其他模型间是否存在显著性差异,如果差异性明显,选定该模型为最终的老化预测模型。本发明解决了单个模型预测结果可能会影响决策制定的问题,用户可以根据老化数据特征和预测误差自动地选择适合的模型,避免了主动性的维护措施或早或晚地执行,降低对软件可靠性的影响。可以扩展更多的模型,针对不同的老化数据规模可以选择最优的预测模型帮助系统运维 |