| 成果基本信息 | ||||||
| 关键词: | 缺陷预测 | |||||
| 成果类别: | 应用技术 | 技术成熟度: | 初期阶段 | |||
| 体现形式(基础理论类): | 其他 | 体现形式(应用技术类): | 新技术 | |||
| 成果登记号: | 资源采集日期: | |||||
| 研究情况 | |||||
| 单位名称: | 武汉理工大学 | 技术水平: | 未评价 | ||
| 评价证书号: | 评价单位: | ||||
| 评价日期: | 评价证书号: | ||||
| 转化情况 | |||||
| 转让范围: | 合作开发 | 推广形式: | 合作开发 | ||
| 已转让企业数(个): | |||||
| 联系方式 | |||||
| 联系人(平台): | 孵化基地 | 联系人(平台)电话: | 0771-3394012 | ||
| *成果单位详细联系方式请登录会员;还不是会员,马上注册! | |||||
| 成果简介 | |||||
本发明公开了一种跨项目软件老化预测方法,首先对源项目和目标项目中的数据进行预处理,之后采用联合分布域适应减小边缘分布和条件分布差异,然后采用欠采样法和改进的子类判别分析法缓解类不平衡问题,最后使用机器学习分类器(逻辑回归等)进行预测。本发明考虑了软件老化缺陷数据集源项目和目标项目间的条件分布差异,并进一步采用改进的子类判别分析法等缓解极其严重的类不平衡问题。它解决了传统跨项目软件老化缺陷预测方法精度以及健壮性不高的问题,有助于开发者在开发测试阶段发现软件老化相关缺陷并移除,避免软件老化问题带来的损失。本发明已在真实软件上验证过其可行性,并可推广至其他软件来预测软件老化相关缺陷 |