成果基本信息 | ||||||
关键词: | 机器学习,GMM‑FRVM模型,分类 | |||||
成果类别: | 应用技术 | 技术成熟度: | 初期阶段 | |||
体现形式(基础理论类): | 其他 | 体现形式(应用技术类): | 新技术 | |||
成果登记号: | 资源采集日期: |
研究情况 | |||||
单位名称: | 武汉理工大学 | 技术水平: | 未评价 | ||
评价证书号: | 评价单位: | ||||
评价日期: | 评价证书号: |
转化情况 | |||||
转让范围: | 合作开发 | 推广形式: | 合作开发 | ||
已转让企业数(个): |
联系方式 | |||||
联系人(平台): | 孵化基地 | 联系人(平台)电话: | 0771-3394012 | ||
*成果单位详细联系方式请登录会员;还不是会员,马上注册! |
成果简介 | |||||
本发明公开了一种基于混合高斯模型和稀疏贝叶斯的主动学习分类方法,该方法包括以下步骤:1)对包括已标记样本和未标记样本的所有样本,采用混合高斯模型训练所有样本得到各个高斯分量的混合系数、均值和协方差;2)构建初始训练集XL,将初始训练集作为已标记样本集,并更新未标注样本集XU;3)构建初始的基于混合高斯核的直推式相关向量机模型GMM‑FRVM;4)基于GMM‑FRVM模型更新已标记样本集和未标记样本集;5)基于更新后的已标记样本集和未标记样本集重新训练GMM‑FRVM模型;6)采用最终的GMM‑FRVM模型完成所有样本的分类标记。本发明方法通过混合高斯模型和稀疏贝叶斯相结合的主动学习的手段,通过尽量少的人工标注获得较优的分类效果 |