| 成果基本信息 | ||||||
| 关键词: | 背景建模,物体检测,卷积神经网络 | |||||
| 成果类别: | 应用技术 | 技术成熟度: | 初期阶段 | |||
| 体现形式(基础理论类): | 其他 | 体现形式(应用技术类): | 新技术 | |||
| 成果登记号: | 资源采集日期: | |||||
| 研究情况 | |||||
| 单位名称: | 武汉理工大学 | 技术水平: | 未评价 | ||
| 评价证书号: | 评价单位: | ||||
| 评价日期: | 评价证书号: | ||||
| 转化情况 | |||||
| 转让范围: | 合作开发 | 推广形式: | 合作开发 | ||
| 已转让企业数(个): | |||||
| 联系方式 | |||||
| 联系人(平台): | 孵化基地 | 联系人(平台)电话: | 0771-3394012 | ||
| *成果单位详细联系方式请登录会员;还不是会员,马上注册! | |||||
| 成果简介 | |||||
本发明公开了一种基于卷积神经网络自适应背景建模物体检测方法。本发明对现有的基于区域块背景建模方法做出了以下两点改进。第一点针对现有的基于区域块背景建模方法以离散余弦变换系数描述作为区域特性表示方面的不足,提出一种基于卷积神经网络区域特征提取的方法,来改善其特征表示能力。第二点提出了一种边缘区域中心像素类型判断方法,通过考虑边缘区域中心像素与其临近像素的关系判断中心像素是前景像素还是背景像素类型。本发明结合了相应实验验证了,相比已有的基于区域块背景建模方法,本方法提出的两种改进能够带来更好的效果 |